(本小题满分13分)在正方体ABCD-A1B1C1D1中,(1)找出平面AC的斜线BD1在平面AC内的射影;(2)直线BD1和直线AC的位置关系如何?(3)直线BD1和直线AC所成的角是多少度?
设为奇函数,为常数。(1)求的值;(2)证明:在(1,+∞)内单调递增;(3)若对于[3,4]上的每一个的值,不等式恒成立,求实数的取值范围。
如图,在直三棱柱中,,为中点.(1)求证:;(2)求证: ∥平面 ;(3)求二面角的余弦值.
(12分)某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积.(Ⅰ)求学生小张选修甲的概率;(Ⅱ)记“函数 为上的偶函数”为事件,求事件的概率;(Ⅲ)求的分布列和数学期望;
(12分)已知各项均为正数的数列的前n项和为,且成等差数列. (1)求数列的通项公式;(2)若,设求数列的前项和.
设函数,其中向量, (1)求的最小正周期与单调减区间;(2)在△ABC中,分别是角A、B、C的对边,已知,△ABC的面积为,求的值。