(12分)某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积.(Ⅰ)求学生小张选修甲的概率;(Ⅱ)记“函数 为上的偶函数”为事件,求事件的概率;(Ⅲ)求的分布列和数学期望;
已知函数,. (Ⅰ)求函数的最大值; (Ⅱ)对于一切正数,恒有成立,求实数的取值组成的集合.
如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E、F分别为棱BC、AD的中点. (Ⅰ)若PD=1,求异面直线PB和DE所成角的余弦值; (Ⅱ)若二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.
QQ先生的鱼缸中有7条鱼,其中6条青鱼和1条黑鱼,计划从当天开始,每天中午从该鱼缸中抓出1条鱼(每条鱼被抓到的概率相同)并吃掉.若黑鱼未被抓出,则它每晚要吃掉1条青鱼(规定青鱼不吃鱼). (Ⅰ)求这7条鱼中至少有6条被QQ先生吃掉的概率; (Ⅱ)以表示这7条鱼中被QQ先生吃掉的鱼的条数,求的分布列及其数学期望.
已知数列满足:. (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前项和.
已知. (Ⅰ)求的值; (Ⅱ)求的值.