已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)对于一切正数,恒有成立,求实数的取值组成的集合.
已知矩阵(Ⅰ)求矩阵的逆矩阵; (Ⅱ)若直线经过矩阵变换后的直线方程为,求直线的方程.
已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.(Ⅰ)求的值;(Ⅱ)求的单调区间;(Ⅲ)设,其中为的导函数.证明:对任意.
已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线与椭圆相切,直线与轴交于点,当为何值时的面积有最小值?并求出最小值.
已知函数·(其中>o),且函数的最小正周期为(I)求f(x)的最大值及相应x的取值(Ⅱ)将函数y= f(x)的图象向左平移单位长度,再将所得图象各点的横坐标缩小为原来的倍(纵坐标不变)得到函数y=g(x)的图象.求函数g(x)的单调区间.
如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.(Ⅰ)证明:平面;(Ⅱ)若,,求二面角的正切值.