已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)对于一切正数,恒有成立,求实数的取值组成的集合.
盒中仅有4只白球5只黑球,从中任意取出一只球.(1)“取出的球是黄球”是什么事件?它的概率是多少?(2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?
某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)不够7环的概率.
如图所示,矩形 A B C D 和梯形 B E F C 所在平面互相垂直, B E ∥ C F , ∠ B C F = ∠ C E F = 90 ° , A D = 3 , E F = 2 .
(1)求证: A E ∥ 平面 D C F ; (2)当 A B 的长为何值时,二面角 A - E F - C 的大小为 60 ° ?
如图所示,在矩形ABCD中,AB=2BC=2a,E为AB上一点,将B点沿线段EC折起至点P,连接PA、PC、PD,取PD的中点F,若有AF∥平面PEC.(1)试确定E点位置;(2)若异面直线PE、CD所成的角为60°,并且PA的长度大于a,求证:平面PEC⊥平面AECD.
三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=,AB=,AC=2,A1C1=1,=.(1)证明:平面A1AD⊥平面BCC1B1;(2)求二面角A—CC1—B的余弦值.