(本小题10分)若函数,当时,函数有极值.(1)求函数的解析式;(2)若方程有3个不同的实根,求实数的取值范围.
(选修4-1:几何证明选讲)如图,设、是圆的两条弦,直线是线段的垂直平分线.已知,求线段的长度.
(本小题满分16分)设数列的前项和为,满足.(1)当时,①设,若,.求实数的值,并判定数列是否为等比数列;②若数列是等差数列,求的值;(2)当时,若数列是等差数列,,且,,求实数的取值范围.
(本小题满分16分)已知函数,,其中函数的图象在点处的切线平行于轴.(1)确定与的关系;(2)若,试讨论函数的单调性; (3)设斜率为的直线与函数的图象交于两点,求证:.
(本小题满分16分)设椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.(1)求椭圆的方程;(2)设直线与椭圆交于不同的两点,以线段为直径作圆.若圆与轴相交于不同的两点,求的面积;(3)如图,、、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点.设的斜率为,的斜率为,求证:为定值.
(本小题满分14分)如图,某城市有一条公路从正西方通过市中心后转向东偏北角方向的.位于该市的某大学与市中心的距离,且.现要修筑一条铁路L,L在OA上设一站,在OB上设一站B,铁路在部分为直线段,且经过大学.其中,,.(1)求大学与站的距离;(2)求铁路段的长.