(本小题满分13分)如图,在四棱柱中,底面是矩形,且,,.若为的中点,且.(1)求证:平面;(2)线段上是否存在一点,使得二面角为?若存在,求出的长;不存在,说明理由.
(本小题满分12分)已知向量函数的最小正周期为.(Ⅰ)求函数的单调递减区间;(Ⅱ)在中,角的对边分别是,且满足,求△的面积.
(本小题满分14分)已知椭圆的左、右焦点分别为、,且抛物线的焦点为椭圆的顶点,过点的直线与椭圆交于不同的两点.(Ⅰ)求椭圆的方程.(Ⅱ)求面积的取值范围.(Ⅲ)若,是否存在大于1的常数,使得椭圆上存在点,满足?若存在,试求出的取值;若不存在,试说明理由.
(本小题满分13分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)是否存在实数,使得当时,对任意的,恒有?若存在,试求出实数的取值范围,若不存在,试说明理由.
(本小题满分12分)已知等差数列单调递增,且,是与的等比中项.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为,求数列的前项和.
(本小题满分12分)如图三棱锥中,,,,.证明:(Ⅰ)面面;(Ⅱ)求点到平面的距离..