(本小题满分12分)如图,已知抛物线:的准线为直线,过点的动直线交抛物线于,两点.(Ⅰ)求抛物线的方程;(Ⅱ)若以线段为直径的圆恒过抛物线上的某定点(异于两点),求的值和点的坐标.
(本小题满分12分)等差数列的前项和为.⑴求数列的通项与前项和;⑵设,求证:数列中任意不同的三项都不可能成为等比数列.
(本小题满分12分)在四边形ABCD中, BD是它的一条对角线,且,,.⑴若△BCD是直角三形,求的值;⑵在⑴的条件下,求.
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.⑴证明PA//平面EDB;⑵证明PB⊥平面EFD;⑶求二面角C—PB—D的大小.
已知函数(1)求的值;(2)已知数列,求数列的通项公式;(3)求证: .
已知定点A(-2,0),动点B是圆(F为圆心)上一点,线段AB的垂直平分线交BF于P.(1)求动点P的轨迹方程;(2)是否存在过点E(0,-4)的直线l交P点的轨迹于点R,T, 且满足(O为原点).若存在,求直线l的方程;若不存在,请说明理由.