(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.⑴证明PA//平面EDB;⑵证明PB⊥平面EFD;⑶求二面角C—PB—D的大小.
已知函数满足2+,对x≠0恒成立,在数列{an}、{bn}中,a1=1,b1=1,对任意x∈N+,,。(1)求函数解析式;(2)求数列{an}、{bn}的通项公式;(3)若对任意实数,总存在自然数k,当n≥k时,恒成立,求k的最小值。
已知点P(2,1)在抛物线C1:x2=2py(p>0)上,直线l过点Q(0,2)且与抛物线C1交于A、B两点.(1)求抛物线C1的方程及弦AB中点M的轨迹C2的方程;(2)若直线l1、l2分别为C1、C2的切线,且l1∥l2,求l1到l2的最近距离.
某工厂某种产品的年产量为1000x件,其中x∈[20,100],需要投入的成本为C(x),当x∈[20,80]时,C(x)=x2﹣30x+500(万元);当x∈(80,100]时,C(x)=(万元).若每一件商品售价为(万元),通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于x的函数解析式;(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?
如图,四棱锥P﹣ABCD的底面是菱形,∠ABC=60°,PA⊥底面ABCD,E,F分别是BC,PC的中点,点H在PD上,且EH⊥PD,PA=AB=2.(1)求证:EH∥平面PBA;(2)求三棱锥P﹣AFH的体积.
已知如图为函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象.(1)求f(x)的解析式及其单调递增区间;(2)求函数g(x)=的值域.