一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.(1)求证:(2)当FG=GD时,在棱AD上确定一点P,使得GP//平面FMC,并给出证明.
(本小题12分)已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。 (1)求椭圆方程; (2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点。证明:为定值; (3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由。 第21题图
某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图.(见下一页图)观察图形的信息,回答下列问题: (Ⅰ)求分数在内的频率,并补全这个频率分布直方图; (Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分; (Ⅲ)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至多有人在分数段的概率。
已知{an}是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上。 (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足bn=(n∈N*),求数列{bn}的前n项和。
已知向量,函数的图像上一个最高点的坐标为,与之相邻的一个最低点的坐标. (1)求的解析式. (2)在△中,是角所对的边,且满足,求角的大小以及取值范围.
(本小题12分)如图,在长方体中,点在棱的延长线上,且.下标 (1)求证:∥平面; (2)求证:平面平面; (3)求四面体的体积.