已知函数f(x)=ex+e-x,其中e是自然对数的底数. (1)证明:f(x)是R上的偶函数; (2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围; (3)已知正数a满足:存在x0∈(1,+∞),使得f(x0)<a(-x03+3x0)成立,试比较ea-1与ae-1的大小,并证明你的结论.
如图,已知圆E:,点,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.(1)求动点Q的轨迹的方程;(2)已知A,B,C是轨迹的三个动点,A与B关于原点对称,且,问△ABC的面积是否存在最小值?若存在,求出此时点C的坐标,若不存在,请说明理由.
如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.(1)试确定点M的位置,使AC∥平面DMF,并说明理由;(2)在(1)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.
某学校为了选拔学生参加“XX市中学生知识竞赛”,先在本校进行选拔测试(满分150分),若该校有100名学生参加选拔测试,并根据选拔测试成绩作出如图所示的频率分布直方图.(1)根据频率分布直方图,估算这100名学生参加选拔测试的平均成绩;(2)若通过学校选拔测试的学生将代表学校参加市知识竞赛,知识竞赛分为初赛和复赛,初赛中每人最多有5次答题机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.假设参赛者甲答对每一个题的概率都是,求甲在初赛中答题个数的分布列和数学期望.
已知数列的前n项和为满足:.(1)求证:数列是等比数列;(2)令,对任意,是否存在正整数m,使都成立?若存在,求出m的值;若不存在,请说明理由.
设平面向量,,函数.(1)当时,求函数的取值范围;(2)当,且时,求的值.