如图:为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求,新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处,(OC为河岸),tan∠BCO=43. (1)求新桥BC的长; (2)当OM多长时,圆形保护区的面积最大?
如图,在四棱锥平面ABCD,,E为PD的中点,F在AD上且.(1)求证:CE//平面PAB;(2)若PA=2AB=2,求四面体PACE的体积.
已知数列中,为其前项和,且对任意,都有.(1)求数列的通项公式;(2)设数列满足,求数列的前项和.
已知函数的周期为.(1)求的解析式;(2)在中,角A、B、C的对边分别是,,求的面积.
已知椭圆的离心率,点A为椭圆上一点,.(1)求椭圆C的方程;(2)设动直线与椭圆C有且只有一个公共点P,且与直线相交于点Q.问:在轴上是否存在定点M,使得以PQ为直径的圆恒过定点M?若存在,求出点M的坐标;若不存在,说明理由.
设.(1)求函数的图象在点处的切线方程;(2)求的单调区间;(3)当时,求实数的取值范围,使得对任意恒成立.