如图:为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求,新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处,(OC为河岸),tan∠BCO=43. (1)求新桥BC的长; (2)当OM多长时,圆形保护区的面积最大?
已知直线经过两点,.(1)求直线的方程;(2)圆的圆心在直线上,且过点和,求圆的方程
已知两条直线与的交点P,(1)求过点P且平行于直线的直线的方程;(2)若直线与直线垂直,求.
已知直线经过点(0,-2),其倾斜角是60°.(1)求直线的方程;(2)求直线与两坐标轴围成三角形的面积
已知椭圆的两个焦点分别为,离心率.(1)求椭圆的方程.(2)一条不与坐标轴平行的直线与椭圆交于不同的两点,且线段的中点的横坐标为,求直线的斜率的取值范围.
已知p :A={x∣2a≤x≤a2+1},q: B={x∣x2-3(a +1)x+2(3a+1) ≤ 0}。若p是q的充分条件,求实数a的取值范围