设数列{an}的前n项和为Sn.若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是"H数列". (1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是"H数列". (2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是"H数列",求d的值; (3)证明:对任意的等差数列{an},总存在两个"H数列" {bn}和{cn},使得an=bn+cn(n∈N*)成立.
已知=2,求: (1)的值;(2)的值.
(本小题满分14分) 已知函数的图象在上连续不断,定义:,. 其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”. (Ⅰ)若,,试写出,的表达式; (Ⅱ)已知函数,,试判断是否为上的“阶收缩函数”,如果是,求出对应的;如果不是,请说明理由; (Ⅲ)已知,函数是上的2阶收缩函数,求的取值范围.
(本小题满分13分) 已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点. (Ⅰ)写出抛物线的标准方程; (Ⅱ)若,求直线的方程; (Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.
(本小题满分13分) 已知函数,其中a为常数,且. (Ⅰ)若,求函数的极值点; (Ⅱ)若函数在区间上单调递减,求实数a的取值范围.
(本小题满分13分) 为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立. (Ⅰ)求4人恰好选择了同一家公园的概率; (Ⅱ)设选择甲公园的志愿者的人数为,试求的分布列及期望.