设数列{an}的前n项和为Sn.若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是"H数列". (1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是"H数列". (2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是"H数列",求d的值; (3)证明:对任意的等差数列{an},总存在两个"H数列" {bn}和{cn},使得an=bn+cn(n∈N*)成立.
已知等差数列中,为的前项和,,. (Ⅰ)求的通项与; (Ⅱ)当为何值时,为最大?最大值为多少?
袋子中装有编号为,,的3个黑球和编号为,的2个红球,从中任意摸出2个球. (Ⅰ)写出所有不同的结果; (Ⅱ)求恰好摸出1个黑球和1个红球的概率; (Ⅲ)求至少摸出1个红球的概率.
在ABC中,a,b,c分别是三个内角A,B,C的对边,设. (Ⅰ)求的值; (Ⅱ)求ABC的面积.
(本小题满分14分) 动圆G与圆外切,同时与圆内切,设动圆圆心G的轨迹为。 (1)求曲线的方程; (2)直线与曲线相交于不同的两点,以为直径作圆,若圆C与轴相交于两点,求面积的最大值; (3)已知,直线与曲线相交于两点(均不与重合),且以为直径的圆过点,求证:直线过定点,并求出该点坐标。
如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点. (1)求直线与平面所成角的余弦值; (2)求点到平面的距离 (3)线段上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.