玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球,求:(1)红或黑的概率;(2)红或黑或白的概率.
海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里 A 处,如图. 现假设:①失事船的移动路径可视为抛物线 y = 12 49 x 2 ;②定位后救援船即刻沿直线匀速前往救援;③救援船出发 t 小时后,失事船所在位置的横坐标为.
(1)当 t = 0 . 5 时,写出失事船所在位置 P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向; (2)问救援船的时速至少是多少海里才能追上失事船?
已知函数 f x = l g x + 1 . (1)若 0 < f 1 - 2 x - f x < 1 ,求 x 的取值范围; (2)若 g x 是以2为周期的偶函数,且当 0 ≤ x ≤ 1 时,有 g x = f x ,求函数 y = g x x ∈ 1 , 2 的反函数.
如图,在四棱锥 P - A B C D 中,底面 A B C D 是矩形, P A ⊥ 底面 A B C D , E 是 P C 的中点.已知 A B = 2 , A D = 2 2 , P A = 2 .求:
(1)三角形 P C D 的面积; (2)异面直线 B C 与 A E 所成的角的大小.
已知函数 f x = e x - a x ,其中 a > 0 . (1)若对一切 x ∈ R , f x ≥ 1 恒成立,求 a 的取值集合; (2)在函数 f x 的图像上去定点 A x 1 , f x 1 , B x 2 , f x 2 x 1 < x 2 ,记直线 A B 的斜率为 k ,证明:存在 x 0 ∈ x 1 , x 2 ,使 f ` x 0 = k 恒成立.
在直角坐标系 x O y 中,已知中心在原点,离心率为 1 2 的椭圆 E 的一个焦点为圆 C : x 2 + y 2 - 4 x + 2 = 0 的圆心. (Ⅰ)求椭圆 E 的方程; (Ⅱ)设 P 是椭圆 E 上一点,过 P 作两条斜率之积为 1 2 的直线 l 1 : l 2 .当直线 l 1 : l 2 都与圆 C 相切时,求 P 的坐标.