(本小题满分14分)设数列的前项和为,且,其中为常数,.(1)求证:数列是等比数列;(2)若,数列的前项和为,求证:当;(3)设数列的公比为数列满足求证:.
已知△中,三边为,且,,求△面积最大值
(本小题满分12分)设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。
已知椭圆的离心率为,右焦点也是抛物线的焦点。 (1)求椭圆方程;(2)若直线与相交于、两点。①若,求直线的方程;②若动点满足,问动点的轨迹能否与椭圆存在公共点?若存在,求出点的坐标;若不存在,说明理由。
已知函数().(1)当时,求函数在上的最大值和最小值;(2)当函数在单调时,求的取值范围;(3)求函数既有极大值又有极小值的充要条件。
等差数列的各项均为正数,,前项和为,为等比数列, ,且 .(1)求与;(2)求数列的前项和。(3)若对任意正整数和任意恒成立,求实数的取值范围.