如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下: (1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围; (2)分别求出这两个投资方案的最大年利润; (3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?
如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF. (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
日照市改善空气质量,开展“绿色家园”活动,加快了绿化荒山的速度,2013年市政府共投资4亿元人民币绿化荒山160万平方米,预计到2015年这三年共累计投资19亿元人民币绿化荒山.若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率; (2)若这两年内的绿化成本不变,预计2015年能绿化多少万平方米荒山?
2015年莒县中学生运动会刚刚闭幕.下面是某初中学校末制作完的三个年级县运动会志愿者的统计图.请你根据图中所给信息解答下列问题: (1)请你求出九年级有多少名县运动会志愿者,并将两幅统计图补充完整; (2)要求从七年级、九年级志愿者中推荐一名队长候选人,八年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是八年级志愿者的概率是多少?
如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上. (1)求抛物线的解析式; (2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由; (3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.