如图,一次函数y=kx+b的图象与坐标轴分别交于点E、F,与双曲线交于点P(-1,n),且F是PE的中点.(1)求直线的解析式;(2)若直线x=a与交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?
已知一个面积为S的等边三角形,现将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图示)。当n=8时,共向外做出了 18个小等边三角形; 当n=k时,共向外做出了 3(k-2)个小等边三角形,这些小等边角形的面积和是 3(k-2)k2S(用含k的式子表示)。
如图,已知的顶点,,是坐标原点.将绕点按逆时针旋转90°得到.写出两点的坐标;求过三点的抛物线的解析式,并求此抛物线的顶点的坐标;在线段上是否存在点使得?若存在,请求出点的坐标;若不存在,请说明理由.
如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,求证:AB·AC=AE·AD.
如图,D,E分别是△ABC的AB,AC边上的点,且DE∥BC,已知AD︰DB=1︰3, DE=2cm,求BC的长. 若△ADE的面积为1.5cm2,求梯形DBCE的面积.
一条排水管的截面如右图所示,截面中有水部分弓形的弦AB为cm, 弓形的高为6cm.求截面⊙O的半径.求截面中的劣弧AB的长.