如图,正方形ABCD中,点F在AD上,点E在AB的延长线上,∠FCE=90°.(1)求证:△CDF≌△CBE.(2)若CD=8.EF=10.求∠DCF的余弦值.
如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1 : ,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.41,≈1.73)
如图,AB是⊙O的直径,AB=2,半径OC⊥AB于O,以点C为圆心,AC长为半径画弧.(1)求阴影部分的面积;(2)把图中以点C为圆心的扇形ACB围成一个圆锥,求这个圆锥的底面半径.
如图,⊿ACO的顶点A,C分别是双曲线与直线在第二象限、第四象限的交点,AB⊥轴于B且S△ABO=(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A,C的坐标;(3)根据图象写出使的自变量x的取值范围.
小兵和小宁玩纸牌游戏。下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小兵先从中抽出一张,小宁从剩余的3张牌中也抽出一张。小宁说:“若抽出的两张牌上的数字都是偶数,你获胜;否则,我获胜。”(1)请用树状图或列表法表示出抽牌可能出现的所有结果;(2)若按小宁说的规则进行游戏,这个游戏公平吗?请说明理由。
如图, 现有边长为1,a (其中a>1)的一张矩形纸片, 现要将它剪裁出三个小矩形 (大小可以不同, 但不能有剩余), 使每个矩形都与原矩形相似,请在图中画出两种不同裁剪方案的裁剪线的示意图,并直接写出相应的a的值(不必写过程)。