小兵和小宁玩纸牌游戏。下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小兵先从中抽出一张,小宁从剩余的3张牌中也抽出一张。小宁说:“若抽出的两张牌上的数字都是偶数,你获胜;否则,我获胜。”(1)请用树状图或列表法表示出抽牌可能出现的所有结果;(2)若按小宁说的规则进行游戏,这个游戏公平吗?请说明理由。
某市要举办冬季马拉松赛,学生会为了确定近期宣传专刊的主题,想知道学生对本次马拉松赛路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根据收集到的信息进行了统计,绘制了如图两幅尚不完整的统计图. 请你根据统计图中所提供的信息解答下列问题: (1)接受问卷调查的学生共有________名; (2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小; (3)若该校共有1 200名学生,请根据上述调查结果估计该校学生中对本次马拉松赛路线达到了“了解”和“基本了解”程度的总人数.
在平面直角坐标系中,点M(,),以点M为圆心,OM长为半径作⊙M .使⊙M与直线OM的另一交点为点B,与轴、轴的另一交点分别为点D、A(如图),连接AM.点P是上的动点. (1)∠AOB的度数为 . (2)Q是射线OP上的点,过点Q作QC垂直于直线OM,垂足为C,直线QC交轴于点E. ①当QE与⊙M相切时,求点E的坐标; ②在①的条件下,在点P运动的整个过程中,求△ODQ面积的最大值及点Q经过的路径长.
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F. (1)求证:AC是⊙O的切线; (2)已知AB=10,BC=6,求⊙O的半径r.
如图,以点P为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=,将△ABC绕点P旋转180°,得到△MCB. (1)求B、C两点的坐标; (2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标; (3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.
如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E. (1)若∠B=70°,求∠CAD的度数; (2)若AB=4,AC=3,求DE的长.