(本小题共13分)已知函数.(Ⅰ)若,求函数的单调区间;(Ⅱ)若在区间上是增函数,求实数的取值范围;(Ⅲ) 已知函数,当时,函数图象上的点均在不等式所表示的平面区域内,求实数的取值范围.
设函数. (1)若函数在处有极值,求函数的最大值; (2)是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由; (3)证明:不等式.
已知圆经过椭圆Γ∶的右焦点F,且F到右准线的距离为2. (1)求椭圆Γ的方程; (2)过原点O的射线l与椭圆Γ在第一象限的交点为Q,与圆C的交点为P,M为OP的中点, 求的最大值.
设函数f(x)=-ax,g(x)=b+2b-1. (1)若曲线y=f(x)与y=g(x)在它们的交点(1,c)处有相同的切线,求实数a,b的值; (2)当a=1,b=0时,求函数h(x)=f(x)+g(x)在区间[t,t+3]内的最小值.
已知函数f(x)=a+bx-a-ab(a≠0),当时,f(x)>0;当时,f(x)<0. (1)求f(x)在内的值域; (2)若方程在有两个不等实根,求c的取值范围.
已知函数f(x)=. (1)求f(x)的值域和最小正周期; (2)方程m[f(x)+]+2=0在内有解,求实数m的取值范围.