(本小题12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2 =y的焦点。1)求椭圆C的方程;2)点P(2,3),Q(2,-3)在椭圆上,A、B是椭圆上位于直线PQ两侧的动点。(1)若直线AB的斜率为,求四边形APBQ的面积的最大值;(2)当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由;
(本小题满分12分)已知函数. (1)判断的奇偶性并说明理由; (2)判断在上的单调性,并用定义证明; (3)求满足的的取值范围.
(本小题满分12分)某滨海高档住宅小区给每一户业主均提供两套供水方案.方案一是供应市政自来水,每吨自来水的水费是2元;方案二是限量供应10吨海底岩层中的温泉水,若温泉水用水量不超过5吨,则按基本价每吨8元收取,超过5吨不超过8吨的部分按基本价的1.5倍收取,超过8吨不超过10吨的部分按基本价的2倍收取. (1)试写出温泉水用水费(元)与其用水量(吨)之间的函数关系式; (2)若业主小王缴纳10月份的物业费时发现一共用水16吨,被收取的费用为72元,那么他当月的自来水与温泉水用水量各为多少吨?
(本小题满分12分)已知是定义在上的偶函数,且当时,. (1)求的解析式; (2)在所给的坐标系内画出函数的草图,并求方程恰有两个不同实根时的实数的取值范围.
(本小题满分12分)已知全集为,集合,. (1)当时,求; (2)若,求实数的取值范围.
(本小题满分10分)计算下列各式: (1); (2).