为了解今年某校高三毕业班准备报考飞行员学生体重情况,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为,其中第二小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.
(本小题满分15分)如图,在三棱锥中,⊥平面,,,,,分别是,,,的中点,,与交于点,与交于点,连结. (Ⅰ)求证:; (Ⅱ)求平面与平面所成角的正弦值.
(本小题满分14分)设数列的前项和为,点在直线上. (Ⅰ)求数列的通项公式; (Ⅱ)在与之间插入个数,使这个数组成公差为的等差数列,求数列的前项和,并求使成立的正整数的最大值.
(本题满分14分)已知中, ,, 分别为角 ,,所对的边,. (Ⅰ)求的值; (Ⅱ)若的面积为,,求 、的长.
已知函数. (Ⅰ)求函数的值域; (Ⅱ)设,证明.
已知圆锥曲线(是参数)和定点,,是圆锥曲线的左、右焦点. (Ⅰ)求经过点且垂直于直线的直线的参数方程; (Ⅱ)设为曲线上的动点,求到直线距离的取值范围.