(满分13分)某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成。已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米。(1)若设休闲区的长米,求公园ABCD所占面积S关于的函数的解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
某人沿一条折线段组成的小路前进,从到,方位角(从正北方向顺时针转到方向所成的角)是,距离是3km;从到,方位角是110°,距离是3km;从到,方位角是140°,距离是()km.试画出大致示意图,并计算出从A到D的方位角和距离(结果保留根号).
已知函数,,. (1)若,试判断并用定义证明函数的单调性; (2)当时,求证函数存在反函数.
如图,在直三棱柱中,,.若为的中点,求直线与平面所成的角.
已知函数. (1)求函数的单调区间和极值; (2)当,且时,证明:.
二次函数,它的导函数的图象与直线平行. (1)求的解析式; (2)若函数的图象与直线有三个公共点,求m的取值范围.