(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图(如下图),(1)求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. (以直方图中的频率作为概率).
某车间生产一种仪器的固定成本是10000元,每生产一台该仪器需要增加投入100 元,已知总收入满足函数:,其中是仪器的月产量. (1)将利润表示为月产量的函数(用表示); (2)当月产量为何值时,车间所获利润最大?最大利润是多少元?(总收入=总成本+利润)
设,其中,如果,求实数的取值范围.
已知函数: (1)写出此函数的定义域和值域; (2)证明函数在为单调递减函数; (3)试判断并证明函数的奇偶性.
设集合,,分别求满足下列条件的实数的取值或取值范围: (1); (2).
(1)求值:; (2)解不等式:.