如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“内似线”.
(1)等边三角形“内似线”的条数为 ;
(2)如图, ΔABC 中, AB = AC ,点 D 在 AC 上,且 BD = BC = AD ,求证: BD 是 ΔABC 的“内似线”;
(3)在 Rt Δ ABC 中, ∠ C = 90 ° , AC = 4 , BC = 3 , E 、 F 分别在边 AC 、 BC 上,且 EF 是 ΔABC 的“内似线”,求 EF 的长.
某学习小组在研究函数 y = 1 6 x 3 - 2 x 的图象与性质时,已列表、描点并画出了图象的一部分.
x
…
- 4
- 3 . 5
- 3
- 2
- 1
0
1
2
3
3.5
4
y
- 8 3
- 7 48
3 2
8 3
11 6
- 11 6
- 3 2
7 48
(1)请补全函数图象;
(2)方程 1 6 x 3 - 2 x = - 2 实数根的个数为 ;
(3)观察图象,写出该函数的两条性质.
不透明袋子中装有2个红球,1个白球和1个黑球,这些球除颜色外无其他差别,随机摸出1个球不放回,再随机摸出1个球,求两次均摸到红球的概率.
张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买 x 个甲种文具时,需购买 y 个乙种文具.
(1)①当减少购买1个甲种文具时, x = , y = ;
②求 y 与 x 之间的函数表达式.
(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲、乙两种文具各购买了多少个?
全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:
(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;
(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.