如图,直线分别交轴、轴于B、A两点,抛物线L:的顶点G在轴上,且过(0,4)和(4,4)两点.求抛物线L的解析式;抛物线L上是否存在这样的点C,使得四边形ABGC是以BG为底边的梯形,若存在,请求出C点的坐标,若不存在,请说明理由.将抛物线L沿轴平行移动得抛物线L,其顶点为P,同时将△PAB沿直线AB翻折得到△DAB,使点D落在抛物线L上. 试问这样的抛物线L是否存在,若存在,求出L对应的函数关系式,若不存在,说明理由.
解不等式组 x - 3 ( x - 2 ) ⩾ 4 2 x - 1 3 ⩽ x + 1 2 .
先化简,再求值: 2 x 2 - 1 ÷ 1 x + 1 - 1 x - 1 ,从1,2,3这三个数中选择一个你认为适合的 x 代入求值.
如图,直线 y = 1 2 x + 1 与 x , y 轴分别交于点 B , A ,顶点为 P 的抛物线 y = a x 2 - 2 ax + c 过点 A .
(1)求出点 A , B 的坐标及 c 的值;
(2)若函数 y = a x 2 - 2 ax + c 在 3 ⩽ x ⩽ 4 时有最大值为 a + 2 ,求 a 的值;
(3)连接 AP ,过点 A 作 AP 的垂线交 x 轴于点 M .设 ΔBMP 的面积为 S .
①直接写出 S 关于 a 的函数关系式及 a 的取值范围;
②结合 S 与 a 的函数图象,直接写出 S > 1 8 时 a 的取值范围.
在 ΔABC 中, ∠ ACB = 90 ° , AC BC = m , D 是边 BC 上一点,将 ΔABD 沿 AD 折叠得到 ΔAED ,连接 BE .
(1)特例发现
如图1,当 m = 1 , AE 落在直线 AC 上时.
①求证: ∠ DAC = ∠ EBC ;
②填空: CD CE 的值为 ;
(2)类比探究
如图2,当 m ≠ 1 , AE 与边 BC 相交时,在 AD 上取一点 G ,使 ∠ ACG = ∠ BCE , CG 交 AE 于点 H .探究 CG CE 的值(用含 m 的式子表示),并写出探究过程;
(3)拓展运用
在(2)的条件下,当 m = 2 2 , D 是 BC 的中点时,若 EB ⋅ EH = 6 ,求 CG 的长.
为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如表所示:
品种
进价(元 / 斤)
售价(元 / 斤)
鲢鱼
a
5
草鱼
b
销量不超过200斤的部分
销量超过200斤的部分
8
7
已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.
(1)求 a , b 的值;
(2)老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼 x 斤(销售过程中损耗不计).
①分别求出每天销售鲢鱼获利 y 1 (元 ) ,销售草鱼获利 y 2 (元 ) 与 x 的函数关系式,并写出 x 的取值范围;
②端午节这天,老李让利销售,将鲢鱼售价每斤降低 m 元,草鱼售价全部定为7元 / 斤,为了保证当天销售这两种鱼总获利 W (元 ) 最小值不少于320元,求 m 的最大值.