如图,直线分别交轴、轴于B、A两点,抛物线L:的顶点G在轴上,且过(0,4)和(4,4)两点.求抛物线L的解析式;抛物线L上是否存在这样的点C,使得四边形ABGC是以BG为底边的梯形,若存在,请求出C点的坐标,若不存在,请说明理由.将抛物线L沿轴平行移动得抛物线L,其顶点为P,同时将△PAB沿直线AB翻折得到△DAB,使点D落在抛物线L上. 试问这样的抛物线L是否存在,若存在,求出L对应的函数关系式,若不存在,说明理由.
如图,AB∥CD,∠NCM=90°,∠NCB=30°,CM平分∠BCE,求∠B的度数。
若关于x、y的二元一次方程组的解互为相反数,求m的值。
解下列方程组:(1);(2)
如图(1),矩形ABCD的一边BC在直角坐标系中轴上,折叠边AD,使点D落在轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为,其中>0. (1)求点E、F的坐标(用含的式子表示); (2)连接OA,若△OAF是等腰三角形,求的值; (3)设抛物线经过图(1)中的A、E两点,如图(2),其顶点为M,连结AM,若∠OAM=90°,求、、的值.
以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30°. (1)点E、F、M分别是AC、CD、DB的中点,连接FM、EM. ①如图1,当点D、C分别在AO、BO的延长线上时,=_______; ②如图2,将图1中的△AOB绕点O沿顺时针方向旋转角(),其他条件不变,判断的值是否发生变化,并对你的结论进行证明; (2)如图3,若BO=,点N在线段OD上,且NO="2." 点P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.