已知椭圆:的离心率为,右焦点为(,0).(1)求椭圆的方程; (2)若过原点作两条互相垂直的射线,与椭圆交于,两点,求证:点到直线的距离为定值.
(本小题14分)已知函数f(x)=(x+-a)的定义域为A,值域为B.(1)当a=4时,求集合A;(2)当B=R时,求实数a的取值范围.
(本小题满分16分)已知函数,,其中,,且。(1)若1是关于的方程的一个解,求的值;(2)当时,不等式恒成立,求的取值范围;(3)当时,函数的最小值为,求的解析式.
(本小题满分14分)设二次函数满足下列条件:①当∈R时,的最小值为0,且f (-1)=f(--1)成立;②当∈(0,5)时,≤≤2+1恒成立。(1)求的值; (2)求的解析式;(3)求最大的实数m(m>1),使得存在实数t,只要当∈时,就有成立。
(本小题满分15分)某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元。(Ⅰ)试写出关于的函数关系式;(Ⅱ)当=640米时,需新建多少个桥墩才能使最小?
(本小题满分15分)已知函数,常数.(1)当时,解不等式;(2)讨论函数的奇偶性,并说明理由.