在中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。(1)用含x的代数式表示AE、DE的长度;(2)当点Q在BD(不包括点B、D)上移动时,设的面积为,求与月份的函数关系式,并写出自变量的取值范围;(3)当为何值时,为直角三角形。
如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10,AB=20.求∠A的度数.
如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.
已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积.(结果可保留根号)
如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.