如图,在四棱锥P—ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD =" CD" =" 2AB" = 2,E为PC的中点,DE=EC(1)求证:平面(2)设PA = a,若平面EBD与平面ABCD所成锐二面角的为,求a的值。
如图,矩形中,,,为上的点,且,AC、BD交于点G.(1)求证:;(2)求证;;(3)求三棱锥的体积.
已知命题p:“”,命题q:“”若命题“p且q”是真命题,求实数a的取值范围.
已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线与轴正半轴、轴分别交于点,与椭圆分别交于点,各点均不重合,且满足,. 当时,试证明直线过定点.过定点(1,0)
已知.(Ⅰ)时,求证在内是减函数;(Ⅱ)若在内有且只有一个极值点,求实数的取值范围.
已知等差数列,公差,前项和为,且满足,.(Ⅰ)求数列的通项公式及前项和(Ⅱ)设,若数列也是等差数列,试确定非零常数,并求数列的前 项和.