如图,矩形中,,,为上的点,且,AC、BD交于点G.(1)求证:;(2)求证;;(3)求三棱锥的体积.
已知正项等差数列的前项和为,若,且成等比数列.(Ⅰ)求的通项公式;(Ⅱ)记的前项和为,求.
如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,.(1)若,求的值;(2)设函数,求的值域.
在等比数列{}中,,公比,且, 与的等比中项为2.(1)求数列{}的通项公式;(2)设 ,求:数列{}的前项和为,
设函数,.(1)当时,函数取得极值,求的值;(2)当时,求函数在区间[1,2]上的最大值;(3)当时,关于的方程有唯一实数解,求实数的值.
已知圆,若焦点在轴上的椭圆 过点,且其长轴长等于圆的直径.(1)求椭圆的方程;(2)过点作两条互相垂直的直线与,与圆交于、两点,交椭圆于另一点,设直线的斜率为,求弦长;(3)求面积的最大值.