已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线与轴正半轴、轴分别交于点,与椭圆分别交于点,各点均不重合,且满足,. 当时,试证明直线过定点.过定点(1,0)
(本小题满分12分) 计算下列各式的值: (1); (2) ;
已知二次函数的图象过点,且与轴有唯一的交点。 (Ⅰ)求的表达式; (Ⅱ)设函数,记此函数的最小值为,求的解析式。
已知函数。 (Ⅰ)讨论的奇偶性; (Ⅱ)判断在上的单调性并用定义证明。
已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立。 (Ⅰ)函数是否属于集合?说明理由: (Ⅱ)若函数属于集合,试求实数和满足的约束条件;
设全集,集合,, (Ⅰ)求,,; (Ⅱ)若求实数的取值范围。