设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点P(a,b)满足|PF2|=|F1F2|.(1)求椭圆的离心率e;(2)设直线PF2与椭圆相交于A,B两点.若直线PF2与圆(x+1)2+(y-)2=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.
如图在正方体ABCD﹣A1B1C1D1中,(1)求证:平面AA1C1C⊥平面A1BD(2)求直线A1B与平面A1B1CD所成的角.
已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,(1)求证:直线l恒过定点;(2)判断直线l被圆C截得的弦长何时最长,何时最短?并求截得的弦长最短时,求m的值以及最短长度.
已知各项均为正数的等比数列{an}中,a2=2,a3•a5=64(1)求数列{an}的通项公式;(2)设bn=log2an,求数列{an+1•bn+1}的前n项和Tn.
在△ABC中,(2a﹣c)cosB=bcosC.(1)求角B;(2)若,求△ABC的面积.
已知圆,圆,该两圆的交点为A,B两点,求:(1)直线AB的方程(2)A,B两点间的距离|AB|(3)直线AB的垂直平分线的方程.