(年云南昆明9分)如图,在平面直角坐标系中,抛物线与x轴交于点A(,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度向C点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使,求K点坐标.
如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出△ABC向左平移5格后得到的△A1B1C1;(2)作出△ABC关于点O的中心对称图形△A2B2C2;(3)求△A1B1C1的面积.
作图题:在方格纸中,将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.
如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向右平移4个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点C1的坐标.(2)作出△A1B1C1关于x轴的对称图形△A2B2C2,并直接写出点A2的坐标.(3)请由图形直接判断以点C1、C2、B2、B1为顶点的四边形是什么四边形?并求出它的面积.
在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题:(1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出A2点的坐标.
顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度.(1)在网格中画出△ABC向上平移4个单位后得到的△A1B1C1;(2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2;(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.