(本题满分12分)已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.
计算题:(本题共4小题,每题3分,共12分)(1);(2) ;(3);(4).
如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转角度得到四边形O,此时边与边BC交于点P,边与BC的延长线交于点Q,连接AP. (1)四边形OABC的形状是 .(2)在旋转过程中,当∠PAO=∠POA,求P点坐标.(3)在旋转过程中,当P为线段BQ中点时,连接OQ,求△OPQ的面积.
如图①所示,已知A、B为直线l上两点,点C为直线上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)
(本题8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM. (1)求证:EF=FM; (2)当AE=1时,求EF的长.
如图,DB∥AC,且,E是AC的中点,(1)求证:BC=DE;(2)连结AD、BE,若要使四边形DBEA是矩形,则给△ABC添加的一个什么条件?并说明理由.(3)在(2)的条件下,若要使四边形DBEA是正方形,则∠C= 0.