(年山东德州12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
平行四边形 ABCD 中, ∠ A = 60 ° , AB = 2 AD , BD 的中垂线分别交 AB , CD 于点 E , F ,垂足为 O .
(1)求证: OE = OF ;
(2)若 AD = 6 ,求 tan ∠ ABD 的值.
如图,已知菱形 ABCD 的对称中心是坐标原点 O ,四个顶点都在坐标轴上,反比例函数 y = k x ( k ≠ 0 ) 的图象与 AD 边交于 E ( − 4 , 1 2 ) , F ( m , 2 ) 两点.
(1)求 k , m 的值;
(2)写出函数 y = k x 图象在菱形 ABCD 内 x 的取值范围.
请完成如下探究系列的有关问题:
探究1:如图1, ΔABC 是等腰直角三角形, ∠ BAC = 90 ° ,点 D 为 BC 上一动点,连接 AD ,以 AD 为边在 AD 的右侧作正方形 ADEF ,连接 CF ,则线段 CF , BD 之间的位置关系为 ,数量关系为 .
探究2:如图2,当点 D 运动到线段 BC 的延长线上,其余条件不变,探究1中的两条结论是否仍然成立?为什么?(请写出证明过程)
探究3:如图3,如果 AB ≠ AC , ∠ BAC ≠ 90 ° , ∠ BCA 仍然保留为 45 ° ,点 D 在线段 BC 上运动,请你判断线段 CF , BD 之间的位置关系,并说明理由.
西宁市教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项) : A .课外阅读; B .家务劳动; C .体育锻炼; D .学科学习; E .社会实践; F .其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:
(1)此次抽查的样本容量为 ,请补全条形统计图;
(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?
(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.
我省某地区为了了解2016年初中毕业生毕业去向,对部分九年级学生进行了抽样调查,就九年级学生毕业后的四种去向: A .读普通高中; B .读职业高中; C .直接进入社会就业; D .其他(如出国等)进行数据统计,并绘制了两幅不完整的统计图(如图1,如图2)
(1)填空:该地区共调查了 名九年级学生;
(2)将两幅统计图中不完整的部分补充完整;
(3)若该地区2016年初中毕业生共有3500人,请估计该地区今年初中毕业生中读普通高中的学生人数;
(4)老师想从甲,乙,丙,丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用画树状图或列表的方法求选中甲同学的概率.