(本题14分)如图,⊙M与x轴交于A.B两点,其坐标分别为、,直径CD⊥x轴于N,抛物线经过A.B.D三点,(1)求m的值及点D的坐标.(2)若直线CE切⊙M于点C,G在直线CE上,已知点G的横坐标为3. 求G的纵坐标(3)对于(2)中的G,是否存在过点G的直线,使它与(1)中抛物线只有一个交点,请说明理由.(4)对于(2)中的G直线FG切⊙M于点F,求直线DF的解析式.
计算 (1)﹣14﹣2×(﹣3)2+|﹣4| (2)(﹣)÷ (3)2(2b﹣3a)+3(2a﹣3b) (4)180°﹣56°23′.
如图,抛物线与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3). (1)求抛物线的解析式及顶点D的坐标; (2)若点P是抛物线第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为时,四边形PQAC是平行四边形;当点P的坐标为 时,四边形PQAC是等腰梯形. (利用备用图画图,直接写出结果,不写求解过程). (3)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标
已知:如图,直径为OA的⊙M与x轴交于点O、A,点B、C把弧 CA分为三等份,连接MC并延长交y轴于点D(0,3) (1)求证:△OMD≌△BAO; (2)若直线把⊙M的周长和△OMD面积均分为相等的两部份,求该直线的解析式.
小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%. (1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围. (2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少? (3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元? (成本=进价×销售量)
如图,直角三角形ABC中,∠C=90°,∠A=30°,点O在斜边AB上,半径为2的⊙O过点B,且切AC边于点D,交BC边于点E, 求:(1)弧DE的长; (结果保留π) (2)由线段CD,CE及弧DE围成的阴影部分的面积。(结果保留π和根号)