如图,∠AOB=90°,∠AOC为锐角,且ON平分∠AOC,射线OM在∠BON内部.(1)请你数一数,图中共有多少个小于平角的角.(2)如果∠AOC=50°,∠MON=45°.①求∠AOM的度数;②请通过计算说明OM是否平分∠BOC.(3)如果∠AOC=x°,∠MON=45°,OM是否平分∠BOC?请说明理由.
如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于点D. (1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹); (2)判断直线BC与⊙O的位置关系,并说明理由; (3)若(1)中的⊙O与船边的另一个交点为E,AB=6,BD=2,求的弧长(结果保留根号和π).
在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1,2,3,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标. (1)用树状图或利用表格写出点肘坐标的所有可能的结果; (2)求点M在直线y=x上的概率.
体育考试是西宁市中考考查科目之一,其成绩作为考生录取的重要依据之一.某中学为了了解学生体育活动情况,随机调查了720名初二学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图(图1)和频数分布直方图(图2).根据图示,解答下列问题: (1)在被调查的学生中“每天锻炼超过1小时”的学生有多少人? (2)“没时间”锻炼的人数是多少?并补全频数分布直方图; (3)2013年西宁市初二学生约为1.2万人,按此调查,可以估计2013年西宁市区初二学生中每天锻炼未超过1小时的学生约有多少万人?
如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿甜方向平移得到△A1C1D1. (1)证明:△A1AD1≌△CC1B; (2)若∠ACB=30°,试问当点C1在线段AC上的什么位置时,四边形ABC1D1是菱形(直接写出答案).
在三个整式x2-1,x2+2x+1,x2+x中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简,再选取一个你认为符合题意的x的值代入求值.