已知椭圆:,(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;(2)在(1)的条件下,设过定点的直线与椭圆交于不同的两点,且为锐角(为坐标原点),求直线的斜率的取值范围;(3)过原点任意作两条互相垂直的直线与椭圆:相交于四点,设原点到四边形的一边距离为,试求时满足的条件.
(1)解不等式:; (2)已知集合,.若,求实数的取值组成的集合.
在△中,内角所对的边分别为,已知m,n,m·n. (1)求的大小; (2)若,,求△的面积.
设函数,,其中实数. (1)若,求函数的单调区间; (2)当函数与的图象只有一个公共点且存在最小值时,记的最小值为,求的值域; (3)若与在区间内均为增函数,求实数的取值范围.
已知函数. (1)若存在,使不等式成立,求实数的取值范围; (2)设,证明:.
设函数. (1)当时,证明:函数不是奇函数; (2)设函数是奇函数,求与的值; (3)在(2)条件下,判断并证明函数的单调性,并求不等式的解集.