已知椭圆:,(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;(2)在(1)的条件下,设过定点的直线与椭圆交于不同的两点,且为锐角(为坐标原点),求直线的斜率的取值范围;(3)过原点任意作两条互相垂直的直线与椭圆:相交于四点,设原点到四边形的一边距离为,试求时满足的条件.
已知点是中心在原点,长轴在x轴上的椭圆的一个顶点,离心率为, 椭圆的左右焦点分别为F1和F2 。 (Ⅰ)求椭圆方程; (Ⅱ)点M在椭圆上,求⊿MF1F2面积的最大值; (Ⅲ)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标; 若不存在,请说明理由。
在直角坐标系中,以为圆心的圆与直线相切. (1)求圆的方程;(2)圆与轴相交于两点,圆内的动点使成等比数列,求的取值范围
已知,O是原点,点P(x, y)的坐标满足 (1)求的最大值.;(2)求的取值范围.
如图所示,已知直线与轴的正半轴分别交于两点,直线和分别交于且平分△的面积,求的最小值.
如图所示,F1、F2分别为椭圆C:的左、右两个焦点,A、B为两个顶点, 已知椭圆C上的点到F1、F2两点的距离之和为4. (Ⅰ)求椭圆C的方程和焦点坐标; (Ⅱ)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求△F1PQ的面积.