(文) 已知椭圆的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;(3)过椭圆C1的左顶点A做直线m,与圆O相交于两点R、S,若是钝角三角形,求直线m的斜率k的取值范围.
如图,在三棱柱中,侧棱垂直于底面,,,,,分别是,的中点. (1)求证:平面平面; (2)求证:平面; (3)求三棱锥的体积.
如图,四棱锥中,底面为矩形,平面,为的中点. (1)证明:平面; (2)设,,三棱锥的体积,求到平面的距离.
已知命题:函数的值域为,命题:函数是上的减函数.若或为真命题,且为假命题,则实数的取值范围是什么?
已知动圆过定点,并且内切于定圆,求动圆圆心的轨迹方程.
如图,已知四棱锥的底面是正方形,侧棱底面. (1)若,是的中点.证明:平面; (2)若二面角的余弦值为,试求的值.