P为椭圆=1(a>b>0)上一点,F1为它的一个焦点,求证:以PF1为直径的圆与以长轴为直径的圆相切.
(本小题满分12分) 为了评估天气对大运会的影响,制定相应预案,深圳市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是我市雷电天气高峰期,在31天中平均发生雷电14.57天(如图7).如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立. (1)求在大运会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01); (2)设大运会期间(8月12日至23日,共12天),发生雷电天气的天数为,求的数学期望和方差.
(本小题满分12分) 设函数,. (1)若,求的最大值及相应的的集合; (2)若是的一个零点,且,求的值和的最小正周期.
已知抛物线:(),焦点为,直线交抛物线于、两 点,是线段的中点,过作轴的垂线交抛物线于点, (1)若抛物线上有一点到焦点的距离为,求此时的值; (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由。
如图,函数图像与x轴相切于原点。 (1)求的值; (2)若,设,若在上至少存在一点,使得成立,求实数的取值范围.
已知椭圆的离心率为,点是椭圆上一定点,直线交椭圆于不同的两点、. (1)求椭圆方程 (2)求的取值范围.