甲、乙等五名奥运志愿者被随机地分到 A , B , C , D 四个不同的岗位服务,每个岗位至少有一名志愿者. (Ⅰ)求甲、乙两人同时参加 A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量 ξ 为这五名志愿者中参加 A 岗位服务的人数,求 ξ 的分布列.
在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值.
在等差数列{an}中, (1)已知a15=33,a45=153,求a61; (2)已知a6=10,S5=5,求a8和S8; (3)已知前3项和为12,前3项积为48,且d>0,求a1.
已知数列{an}满足a1=4,an=4-(n≥2),令bn=.求证:数列{bn}是等差数列.
在数列{an}中,a1=,an=1-(n≥2,n∈N*),数列{an}的前n项和为Sn. (1)求证:an+3=an;(2)求a2 008.
已知数列{an}中,a1=1,前n项和为Sn,对任意的n≥2,3Sn-4,an,2-总成等差数列. (1)求a2、a3、a4的值; (2)求通项公式an.