(理)过点P(1,0)作曲线的切线,切点为M1,设M1在x轴上的投影是点P1.又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2,….依此下去,得到一系列点M1,M2…,Mn,…,设它们的横坐标a1,a2,…,an,…,构成数列为.(1)求证数列是等比数列,并求其通项公式;(2)求证:;(3)当的前n项和Sn.
已知 cos α = 1 7 , cos ( α - β ) = 13 14 ,且 0 < β < α < π 2 .
(Ⅰ)求 tan 2 a 的值. (Ⅱ)求 β .
已知抛物线 y = x 2 和三个点 M x 0 , y 0 , P 0 , y 0 , N - x 0 , y 0 y 0 ≠ x 0 2 , y 0 > 0 ,过点 M 的一条直线交抛物线于 A 、 B 两点, A P 、 B P 的延长线分别交曲线 C 于 E 、 F .
(1)证明 E 、 F 、 N 三点共线; (2)如果 A 、 B 、 M 、 N 四点共线,问:是否存在 y 0 ,使以线段 A B 为直径的圆与抛物线有异于 A 、 B 的交点?如果存在,求出 y 0 的取值范围,并求出该交点到直线 A B 的距离;若不存在,请说明理由.
已知函数 f ( x ) = 1 4 x 4 + 1 3 a x 3 - a 2 x 2 + a 4 ( a > 0 )
(1)求函数 y = f ( x ) 的单调区间; (2)若函数 y = f ( x ) 的图像与直线 y = 1 恰有两个交点,求 a 的取值范围.
如图,正三棱锥 O - A B C 的三条侧棱 O A , O B , O C 两两垂直,且长度均为2. E , F 分别是 A B , A C 的中点, H 是 E F 的中点,过 E F 的平面与侧棱 O A , O B , O C 或其延长线分别相交于 A 1 , B 1 , C 1 ,已知 O A 1 = 3 2 .
(1)求证: B 1 C 1 ⊥面 O A H ; (2)求二面角 O - A 1 B 1 - C 1 的大小.
等差数列 a n 的各项均为正数, a 1 = 3 ,前 n 项和为 S n , b n 为等比数列, b 1 = 1 ,且 b 2 S 2 = 64 , b 3 S 3 = 960 . (1)求 a n 与 b n ;
(2)求和: 1 S 1 + 1 S 2 + . . . + 1 S n .