为适应2012年3月23日公安部交通管理局印发的《加强机动车驾驶人管理指导意见》,某驾校将小型汽车驾照考试科目二的培训测试调整为:从10个备选测试项目中随机抽取4个,只有选中的4个项目均测试合格,科目二的培训才算通过.已知甲对10个测试项目测试合格的概率均为;乙对其中8个测试项目完全有合格把握,而另2个测试项目却根本不会.(Ⅰ)求甲恰有2个测试项目合格的概率;(Ⅱ)记乙的测试项目合格数为,求的分布列及数学期望.
已知(m为常数,m>0且m≠1). 设(n∈)是首项为m2,公比为m的等比数列. (1)求证:数列是等差数列; (2)若,且数列的前n项和为Sn,当m=2时,求Sn;
如图,在三棱锥中,平面,,为 侧棱上一点,它的正(主)视图和侧(左)视图如图所示. (1)证明:平面; (2)求三棱锥的体积;
某班级共有60名学生,先用抽签法从中抽取部分学生调查他们的学习情况,若每位学生被抽到的概率为. (1)求从中抽取的学生数; (2)若抽查结果如下,先确定x,再完成频率分布直方图;
(3)估计该班学生每周学习时间的平均数(同一组中的数据用该组区间的中点值作代表).
在城的西南方向上有一个观测站,在城的南偏东的方向上有一条笔直的公路,一辆汽车正沿着该公路上向城驶来.某一刻,在观测站处观测到汽车与处相距,在分钟后观测到汽车与处相距.若汽车速度为,求该汽车还需多长时间才能到达城?
已知函数. (I) 若,求的单调区间; (II)已知是的两个不同的极值点,且,若恒成立,求实数b的取值范围.