已知椭圆C:过点,且椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若动点P在直线上,过P作直线交椭圆C于M,N两点,且P为线段MN中点,再过P作直线.证明:直线恒过定点,并求出该定点的坐标.
(本小题满分15分)若是椭圆上一点,分别是椭圆的左、右顶点,直线的斜率的乘积等于. (1)求椭圆的离心率的值; (2)过椭圆的右焦点F且斜率为1的直线交椭圆于两点,为坐标原点,若为椭圆上一点,满足,求实数的值.
如图,平面⊥平面,其中为矩形,为梯形,∥,,. (1)求异面直线与所成角的大小; (2)若二面角的平面角的余弦值为,求的长.
(本小题满分14分)已知函数,数列的前项的和为,点均在函数的图象上. (1)求数列的通项公式; (2)令,证明:.
在中,角的对边分别为,且. (1)若,求角的大小; (2)若,,求面积的最小值.
(本小题满分10分)【选修4-5:不等式选讲】 在中,内角A、B、C所对的边的长分别为a、b、c,证明: (Ⅰ); (Ⅱ).