数列,,满足:,,.(1)若数列是等差数列,求证:数列是等差数列;(2)若数列,都是等差数列,求证:数列从第二项起为等差数列;(3)若数列是等差数列,试判断当时,数列是否成等差数列?证明你的结论.
设△ABC的三个内角A,B,C对边分别是a,b,c,已知,(1)求角B;(2)已知,求b.
(1)从1,2,3,4,5五个数中依次取2个数,求这两个数的差的绝对值等于1的概率;(2)△ABC中,∠B=60°,∠C=45°,高AD=,在BC边上任取一点M,求 的概率.
已知函数(b为常数).(1)函数f(x)的图像在点(1,f(1))处的切线与g(x)的图像相切,求实数b的值;(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b 的取值范围;(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|> |g(x1)-g(x2)|成立,求b的取值范围.
已知函数定义在上,对于任意的,有,且当时,.(1)验证函数是否满足这些条件;(2)若,且,求的值.(3)若,试解关于的方程.
已知函数f(x)=3-2log2x,g(x)=log2x.(1)如果x∈[1,4],求函数h(x)=(f(x)+1)g(x)的值域;(2)求函数M(x)=的最大值;(3)如果不等式f(x2)f()>kg(x)对x∈[2,4]有解,求实数k的取值范围.