山东省实验中学为了活跃师生的课外文化生活,在2015年3月中旬举办了一次知识竞赛,经过层层筛选,最后五名同学进入了总决赛.在进行笔答题知识竞赛中,最后一个大题是选做题,要求参加竞赛的五名选手从2道题中选做一道进行解答,假设这5位选手选做每一题的可能性均为,求(Ⅰ)其中甲乙2位选手选做同一道题的概率.(Ⅱ)设这5位选手中选做第1题的人数为x,求x的分布列及数学期望.
(本小题满分14分) 已知数列中,,,其前项和满足(,). (1)求数列的通项公式; (2)设为非零整数,),试确定的值,使得对任意,都有成立.
(本小题满分14分) 设函数. (1)求函数的单调递增区间; (2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
(本小题满分14分) 已知曲线上任意一点到两个定点和的距离之和为4. (1)求曲线的方程; (2)设过的直线与曲线交于、两点,且(为坐标原点),求直线的方程.
(本小题满分14分) 如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)求二面角的大小.
(本小题满分12分) 已知射手甲射击一次,击中目标的概率是. (1)求甲射击5次,恰有3次击中目标的概率; (2)假设甲连续2次未击中目标,则停止其射击,求甲恰好射击5次后,被停止射击的概率.