如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.(1)求点的轨迹曲线的方程;(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
(本小题满分10分)选修4—5:不等式选讲设函数(1)若a=1,解不等式;(2)若函数有最小值,求实数a的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程选讲.在直角坐标系中,曲线的参数方程为(为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数).(1)若曲线与曲线只有一个公共点,求的取值范围;(2)当时,求曲线上的点与曲线上点的最小距离.
(本小题满分10分)选修4—1:几何证明选讲如图,AB是的直径,弦BD、CA的延长线相交于点E,F为BA延长线上一点,且,求证:(1);(2).
(本小题满分12分)已知函数.(1)讨论函数的单调性;(2)对于任意正实数,不等式恒成立,求实数的取值范围;(3)是否存在最小的正常数,使得:当时,对于任意正实数,不等式恒成立?给出你的结论,并说明结论的合理性.
(本小题满分12分)已知椭圆的离心率为,椭圆的右焦点和抛物线的焦点相同.(1)求椭圆的方程.(2)如图,已知直线与椭圆及抛物线都有两个不同的公共点,且直线与椭圆交于两点;过焦点的直线与抛物线交于两点,记,求的取值范围.