如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.(1)求点的轨迹曲线的方程;(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
设 x1、x2()是函数 ()的两个极值点. (I)若 ,,求函数 的解析式; (II)若 ,求 b 的最大值;
已知三次函数的导函数,,、为实数。 (Ⅰ)若曲线在点(,)处切线的斜率为12,求的值; (Ⅱ)若在区间[-1,1]上的最小值、最大值分别为-2、1,且,求函数的解析式。
数列满足. (Ⅰ)若是等差数列,求其通项公式; (Ⅱ)若满足,为的前项和,求.
已知向量 与 共线,设函数 。 (1)求函数 的周期及最大值; (2)已知锐角 △ABC 中的三个内角分别为 A、B、C,若有 ,边 BC=,,求 △ABC 的面积.
设集合,. (1)求集合; (2)若关于的不等式的解集是B,求的值.