(本小题满分12分)已知数列是等差数列,为的前项和,且,;数列对任意,总有成立.(Ⅰ)求数列和的通项公式;(Ⅱ)记,求数列的前项和.
已知向量(>0),函数的最小正周期为。(I)求函数的单调增区间;(II)如果△ABC的三边a、b、c所对的角分别为A、B、C,且满足求的值。
已知函数.(Ⅰ)若曲线在处的切线方程为,求实数和的值;(Ⅱ)若,且对任意,都,求的取值范围.
已知函数(Ⅰ)时,求的极小值;(Ⅱ)若函数与的图象在上有两个不同的交点,求的取值范围
设(1)若在上存在单调递增区间,求的取值范围;(Ⅱ)当时,在的最小值为,求在该区间上的最大值
已知圆的参数方程为 (为参数),(1)以原点为极点、轴的正半轴为极轴建立极坐标系,写出圆的极坐标方程;(2)已知直线经过原点,倾斜角,设与圆相交于、两点,求到、两点的距离之积。