设(1)若在上存在单调递增区间,求的取值范围;(Ⅱ)当时,在的最小值为,求在该区间上的最大值
已知椭圆的右焦点为,设左顶点为A,上顶点为B且,如图.(1)求椭圆的方程;(2)若,过的直线交椭圆于两点,试确定的取值范围.
已知函数在处取得极小值.(1)若函数的极小值是,求;(2)若函数的极小值不小于,问:是否存在实数,使得函数在上单调递减?若存在,求出的范围;若不存在,说明理由.
如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,,是锐角,且平面ACEF⊥平面ABCD.(1)求证:;(2)若直线DE与平面ACEF所成的角的正切值是,试求的余弦值.
已知求:(1);(2).
设f(x)和g(x)都是定义在同一区间上的两个函数,若对任意x∈[1,2],都有|f(x)+g(x)|≤8,则称f(x)和g(x)是“友好函数”,设f(x)=ax,g(x)=.(1)若a∈{1,4},b∈{-1,1,4},求f(x)和g(x)是“友好函数”的概率;(2)若a∈[1,4],b∈[1,4],求f(x)和g(x)是“友好函数”的概率.