如图,在正三棱锥中,,分别为,的中点.(1)求证:平面;(2)求证:平面平面.
(本小题满分12分)在2015年全运会上两名射击运动员甲、乙在比赛中打出如下成绩: 甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8; 乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1; (1)用茎叶图表示甲、乙两人的成绩;并根据茎叶图估计他们的中位数; (2)已知甲、乙两人成绩的方差分别为与,分别计算两个样本的平均数和标准差,并根据计算结果估计哪位运动员的成绩比较好,哪位运动员的成绩比较稳定.
(本小题满分12分)已知一条光线从点射出,经过轴反射后,反射光线与圆相切,求反射光线所在直线的方程.
(本小题满分12分)已知圆和定点,由圆外一点向圆引切线,切点为,且满足. (1)求实数间满足的等量关系; (2)若以为圆心的圆与圆有公共点,试求圆的半径最小时圆的方程; (3)当点的位置发生变化时,直线是否过定点,如果是,求出定点坐标,如果不是,说明理由.
(本小题满分12分)在三棱锥中,,,点在棱上,且. (Ⅰ)试证明:; (Ⅱ)若,过直线任作一个平面与直线相交于点,得到三棱锥的一个截面,求面积的最小值; (Ⅲ)若,求二面角的正弦值.
(本小题满分12分)设是直线外一定点,且点到直线的距离是,试证明:.