已知圆O:交轴于A,B两点,曲线C是以为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.(1)求椭圆C的标准方程;(2)若点P的坐标为(1,1),求证:直线PQ与圆相切; (3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
(本小题满分12分)已知中, 角对边分别为,已知.(1)若的面积等于,求(2)若,求的面积.
(本小题满分12分)设函数(k为常数,e=2.718 28…是自然对数的底数).(1)当时,求函数f(x)的单调区间;(2)若函数在(0,2)内存在两个极值点,求k的取值范围.
(本小题满分12分)已知曲线在点处的切线的斜率为1.(1)若函数f(x)的图象在上为减函数,求的取值范围;(2)当时,不等式恒成立,求a的取值范围.
(本小题满分12分)抛物线的焦点为F,过点F的直线交抛物线于A,B两点.(1)若,求直线AB的斜率;(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.
(本小题满分12分)如图,在直四棱柱中,底面为等腰梯形,,,,,分别是棱的中点.(1)证明:直线平面;(2)求二面角的余弦值.