已知圆O:交轴于A,B两点,曲线C是以为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.(1)求椭圆C的标准方程;(2)若点P的坐标为(1,1),求证:直线PQ与圆相切; (3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
已知
化简
已知<<<, (Ⅰ)求的值.(Ⅱ)求.
已知向量a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),α∈(),且a⊥b. 求tanα的值;
设函数f(x)= x3-mx2+(m2-4)x,x∈R. (1)当m=3时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)已知函数f(x)有三个互不相同的零点0,α,β,且α<β.若对任意的x∈[α,β],都有f(x)≥f(1) 恒成立,求实数m的取值范围.