如图,在四棱锥 P - A B C D 中,底面 A B C D 是矩形.已知 A B = 3 , A D = 2 , P A = 2 , P D = 2 2 , ∠ P A B = 60 ° . (Ⅰ)证明 A D ⊥ 平面 P A B ; (Ⅱ)求异面直线 P C 与 A D 所成的角的大小; (Ⅲ)求二面角 P - B D - A 的大小.
已知且,函数,,记. (Ⅰ)求函数的定义域及其零点; (Ⅱ)若关于的方程在区间内仅有一解,求实数的取值范围.
已知函数. (Ⅰ)求函数的最小值和最小正周期; (Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.
在平面直角坐标系中,O为坐标原点,已知点A (Ⅰ)若求证:; (Ⅱ)若求的值.
已知,求下列各式的值: (Ⅰ); (Ⅱ).
已知圆. (1)此方程表示圆,求m的取值范围; (2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且(O为坐标原点),求m的值; (3)在(2)的条件下,求以为直径的圆的方程.